Skip to main content

Featured Articlce

The Future of 3D Printing and Healthcare

When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as  airplane  and  automobile parts  to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in  the 1980s  as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and  patient-specific models  to aid in surgery and medical procedures. With the capability to 3D ...

Polymer Development Reduces Fuel Cell Cost

polymer fuel cell
Scientists at the University of Delaware may have developed a polymer for use in a fuel cell that has high conductivity but also does not swell, thereby avoiding a common problem with similar cells that have problems with mechanical integrity.
The membrane, says the developer, Yushan Yan, distinguished professor of engineering at the university, is a game-changing development that promises to revolutionize the way engineers think about traditional chemical crosslinking methods used to create strong fuel cell membranes. Until now, polymer membranes had to be strong and resistant to water swelling. To have that strength, however, polymer chains were traditionally chemically crosslinked. The catch was that chemical crosslinking hampered the membranes’ other functionalities, according to the University of Delaware  announcement about Yan’s development.
Yan’s research team demonstrated that it is possible to create polymer bonds that are as effective as those that are chemically crosslinked, without the brittleness crosslinked polymers typically display. The announcement describes Yan’s innovation:
Yan explains that traditionally when engineers want to increase conductivity in a polymer, they increase the density of the ionic groups present in the polymer. However, with the high density comes membrane swelling, which can destroy the mechanical integrity of the polymer and reduce or eliminate its usefulness. By exploiting the fact that positive and negatively charged ions physically attract one another, Yan’s group was able to increase the strength of the polymer bond without any chemical crosslinking.
Yan took advantage of the van der Waals interaction, a group of weak molecular interactions. “We realized that we can play with the van der Waals interaction between the polymer chains, because a positive charge complemented by a negative charge creates what’s called a ‘dipole moment’ that polarizes the molecules and causes them to attract; and the larger the dipole moment, the stronger the interaction,” he says.
The team then designed the polymer chain to have high electron density and therefore be more influenced by the van der Waal interaction, increasing the attractive force without creating any chemical bond. “It is a bond that is created by the presence and strength of these positive and negative charges,” Yan says.
The discovery of leveraging the van der Waal force was an accident that occurred while experimenting with new polymers. “We suddenly realized that the membrane wasn’t swelling anymore, but conductivity remained high,” Yan says.
The development would reduce costs for manufacturing fuel cells, Yan says, allowing the technology to become more competitive with conventional technology that often uses expensive platinum. Yan sees the technology as one that can replicate the conventional lifespan of a vehicle’s internal combustion engine.

Comments

Popular posts from this blog

The Future of 3D Printing and Healthcare

When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as  airplane  and  automobile parts  to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in  the 1980s  as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and  patient-specific models  to aid in surgery and medical procedures. With the capability to 3D ...

The Science Behind 4 Of The Greatest Polymers Of All Time

PMMA Applications: Lucite, dentures, aquarium windows Developed in: 1877 Polymethylmethacrylate is a very versatile polymer. If you ever see a clear plastic block, it's probably PMMA. It was first commercialized in the 1930s in Germany, and is now found anywhere one needs clear, strong material. This includes bulletproof "glass" at your favorite corner liquor store and the huge shark tanks at the Monterey Bay Aquarium. But my favorite use of PMMA is in so-called "frozen lightning" or Lichtenberg figure sculpture. Basically, put a chunk of PMMA into an electron accelerator, fire a bunch of electrons into the plastic until it's got about two million volts of charge, then touch the side of the plastic with a bit of wire and watch as bolts of lightning carve tracks inside the clear plastic. Superabsorbers Applications: Diapers Developed in: 1960s Back in the day, diapers were made from cloth. Frequently, those cloth diapers were filled with wads of n...

Virginia Tech Students Create Foldable Bike Helmets

Helmets: Something you may have hated with a passion as a child, but your parents made you wear. As adults, one could argue helmet use is pretty divided. If you head down your local bike path or along a neighborhood street, you’ll see a good number of riders not wearing their helmets. Two Virginia Tech students think that’s a problem. Co-founders David Hall and Jordan Klein started  Park & Diamond  and set out to create a safe, compact, and stylish helmet to hopefully convince people to wear them every time they bike. The interest in refining technology to prevent bike related head injuries is  incredibly personal  for the team of innovators, especially for Hall. In 2015 Hall’s younger sister was involved in a bike accident in Philadelphia and remained in a coma for four months. The bicycle crash occurred at the corner of Park Avenue and Diamond Street in Philadelphia—which is reflected in the name of their company. How Helmets Work Just like the...