Skip to main content

Featured Articlce

The Future of 3D Printing and Healthcare

When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as  airplane  and  automobile parts  to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in  the 1980s  as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and  patient-specific models  to aid in surgery and medical procedures. With the capability to 3D print patient-specific models, more acc

Polymer Plugs Blood Vessels During Surgery

Image result for polymers in surgery
Clamps have traditionally been used to control blood flow during surgical procedures. Now there is another option. A thermosensitive polymer material that can temporarily block blood flow during non-neurovascular procedures has been approved in the U.S., reports Andrew Turley in Chemistry World.
The water-soluble vessel occluder is called LeGoo. John Merhige from Pluromed, the company that makes this medical product, told Turley that LeGoo puts the vessels under less trauma than clamps and maintains the shape of the vessel, making suturing more straightforward.
Turley writes that “the key to the success of LeGoo is that the viscosity changes over a relatively narrow temperature range of only a few degrees.” At room temperature, it is a viscous liquid. At body temperature, it forms a solid gel. When injected into a blood vessel in the heart surgery below, LeGoo can halt blood flow for about 10 minutes or until cooled back a liquid by applying ice.
The active ingredient in LeGoo is a poloxamer. Researchers have been interested in these biocompatible polymers for other medical purposes such as surgical applications and for drug delivery mechanisms. Turley explains how the poloxamer’s chemistry works to plug a blood vessel:
[A] poloxamer is comprised of] three distinct ‘blocks’ of repeating monomers, a hydrophobic block of polypropyleneglycol sandwiched between two hydrophilic blocks of polyethyleneglycol. At higher temperatures, the hydrophilic arms align, and in this conformation the molecules form micelles, leading to an increase in viscosity and a phase change from liquid to gel. This process is reversed when the product is cooled, after which the molecules dissolve in the blood and pass harmlessly out of the body. Afterwards, the poloxamer can’t reform as a gel because the concentration is too low.
Although LeGoo adds a specialty to the surgical toolkit, it is unlikely to replace clamps. LeGoo is already approved in Europe, and Alun Davies, professor of vascular surgery at Imperial College London, U.K., has used it. He told Turley that clamps are comparatively cheap because they are reusable. Where LeGoo is particularly helpful though is in arteries that have become calcified, when the force of the clamp breaking up the chalky residue can lead to damage, Davies said.

Comments

Popular posts from this blog

Phthalates and BPA Regulations: Are We There Yet?

It’s better to be safe than sorry.  But the Environmental Protection Agency  recently withdrew two proposed rules regulating chemicals  that it had developed under authority of the Toxic Substances Control Act (TSCA) and submitted to the White House’s Office of Information in 2010 and 2011.  Dr. Richard Deninson  of the Environmental Defense Fund explains it further: Faced presumably with the reality that OIRA [Office of Information and Regulatory Affairs] was never going to let EPA even propose the rules for public comment, EPA decided to withdraw them.  The two proposed rules that were just withdrawn would have: Designated as ‘chemicals of concern’ three classes of chemicals for which evidence is more than sufficient to warrant such a designation:  bisphenol A (BPA), a category of phthalates, and a category of polybrominated diphenyl ethers (PBDEs).  By listing a chemical as ‘of concern,’ EPA may obtain, and provide to the public, more information about the chemical than it

The Science Behind 4 Of The Greatest Polymers Of All Time

PMMA Applications: Lucite, dentures, aquarium windows Developed in: 1877 Polymethylmethacrylate is a very versatile polymer. If you ever see a clear plastic block, it's probably PMMA. It was first commercialized in the 1930s in Germany, and is now found anywhere one needs clear, strong material. This includes bulletproof "glass" at your favorite corner liquor store and the huge shark tanks at the Monterey Bay Aquarium. But my favorite use of PMMA is in so-called "frozen lightning" or Lichtenberg figure sculpture. Basically, put a chunk of PMMA into an electron accelerator, fire a bunch of electrons into the plastic until it's got about two million volts of charge, then touch the side of the plastic with a bit of wire and watch as bolts of lightning carve tracks inside the clear plastic. Superabsorbers Applications: Diapers Developed in: 1960s Back in the day, diapers were made from cloth. Frequently, those cloth diapers were filled with wads of n

Virginia Tech Students Create Foldable Bike Helmets

Helmets: Something you may have hated with a passion as a child, but your parents made you wear. As adults, one could argue helmet use is pretty divided. If you head down your local bike path or along a neighborhood street, you’ll see a good number of riders not wearing their helmets. Two Virginia Tech students think that’s a problem. Co-founders David Hall and Jordan Klein started  Park & Diamond  and set out to create a safe, compact, and stylish helmet to hopefully convince people to wear them every time they bike. The interest in refining technology to prevent bike related head injuries is  incredibly personal  for the team of innovators, especially for Hall. In 2015 Hall’s younger sister was involved in a bike accident in Philadelphia and remained in a coma for four months. The bicycle crash occurred at the corner of Park Avenue and Diamond Street in Philadelphia—which is reflected in the name of their company. How Helmets Work Just like the  crumple zone  in y