Skip to main content

Featured Articlce

The Future of 3D Printing and Healthcare

When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as  airplane  and  automobile parts  to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in  the 1980s  as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and  patient-specific models  to aid in surgery and medical procedures. With the capability to 3D ...

Superhydrophobic Polymers Deliver Drugs

Image result for Superhydrophobic polymers
Superhydrophobic polymers can waterproof clothing or make self-cleaning materials, but Boston University researchers have shown that the material’s trapped air can also be used to modulate how fast medicine is administered in the body. Jon Evans writes in Chemistry World:
It turns out that superhydrophobic materials are very good at slowly releasing drugs over extended periods of time, from weeks to months. This is because the water-repellent properties of these materials arise from their rough, rippled surfaces, which trap air between the ripples. This trapped air prevents liquids such as water from penetrating the ripples, forcing it to remain perched on top as intact droplets.
Although other researchers have explored superhydrophobic polymers for drug delivery systems, this group is the first to use air to direct the release of the drug, according to Chemistry World.
Evans explains that the trapped air secures the drug that has been loaded on a polymer mesh until the material is soaked in a bodily fluid, such as blood. As the liquid displaces the air, the drug is released. Drugs can be released over longer time frames by using more hydrophobic materials because they have a tighter grip on the trapped air.
The researchers fabricated polycaprolactone mesh with electrospinning. Then, Evans writes, “by altering the concentration of a hydrophobic dopant—poly(glycerol monostearate-co-epsilon-caprolactone)—they could control the hydrophobicity of the mesh and load it with a drug by adding it to the electrospinning solution.”
The researchers have conducted in vitro studies on the mesh in salt water and blood serum using an anti-cancer drug. They are currently testing mesh loaded with other drugs in mice.
Team leader told Chemistry World that the drug delivery system could be useful for “unmet clinical needs” where the time frame is important, such as for managing pain after lung surgery and preventing lung tumor recurrence after surgical resection.

Comments

Popular posts from this blog

The Future of 3D Printing and Healthcare

When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as  airplane  and  automobile parts  to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in  the 1980s  as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and  patient-specific models  to aid in surgery and medical procedures. With the capability to 3D ...

The Science Behind 4 Of The Greatest Polymers Of All Time

PMMA Applications: Lucite, dentures, aquarium windows Developed in: 1877 Polymethylmethacrylate is a very versatile polymer. If you ever see a clear plastic block, it's probably PMMA. It was first commercialized in the 1930s in Germany, and is now found anywhere one needs clear, strong material. This includes bulletproof "glass" at your favorite corner liquor store and the huge shark tanks at the Monterey Bay Aquarium. But my favorite use of PMMA is in so-called "frozen lightning" or Lichtenberg figure sculpture. Basically, put a chunk of PMMA into an electron accelerator, fire a bunch of electrons into the plastic until it's got about two million volts of charge, then touch the side of the plastic with a bit of wire and watch as bolts of lightning carve tracks inside the clear plastic. Superabsorbers Applications: Diapers Developed in: 1960s Back in the day, diapers were made from cloth. Frequently, those cloth diapers were filled with wads of n...

Virginia Tech Students Create Foldable Bike Helmets

Helmets: Something you may have hated with a passion as a child, but your parents made you wear. As adults, one could argue helmet use is pretty divided. If you head down your local bike path or along a neighborhood street, you’ll see a good number of riders not wearing their helmets. Two Virginia Tech students think that’s a problem. Co-founders David Hall and Jordan Klein started  Park & Diamond  and set out to create a safe, compact, and stylish helmet to hopefully convince people to wear them every time they bike. The interest in refining technology to prevent bike related head injuries is  incredibly personal  for the team of innovators, especially for Hall. In 2015 Hall’s younger sister was involved in a bike accident in Philadelphia and remained in a coma for four months. The bicycle crash occurred at the corner of Park Avenue and Diamond Street in Philadelphia—which is reflected in the name of their company. How Helmets Work Just like the...