Skip to main content

Featured Articlce

The Future of 3D Printing and Healthcare

When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as  airplane  and  automobile parts  to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in  the 1980s  as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and  patient-specific models  to aid in surgery and medical procedures. With the capability to 3D ...

A Better Understanding of Polymer Electrolytes

The chemical structure of Nafion, a polymer electrolyte.
Nafion which was discovered at DuPont in the 1960s is a polymer membrane that conducts ions and water through its nanostructure. This property makes the material important for a number of industrial energy applications, such as fuel cells, organic batteries, and reverse-osmosis water purification.
But the material, which is a polymer electrolyte, has also tickled the curiosity of researchers because they haven’t been able to get the details of how it works. A research team led by chemist Louis Madsen recently described in an article in Nature Materials how they found a way to understand Nafion’s internal structure. In doing so, they discovered how they can tweak the material to make it work even better for various applications.
As Research Division Communications Manager at Virginia Tech News, Susan Trulove, explains:
Nafion is made up of molecules that combine the non-stick and tough nature of Teflon with the conductive properties of an acid, such as battery acid. A network of tiny channels, nanometers in size, carries water or ions quickly through the polymer. “But, due to the irregular structure of Nafion, scientists have not been able to get reliable information about its properties using most standard analysis tools, such as transmission electron microscopy,” said Madsen, assistant professor of physical, polymer, and materials chemistry.
The researchers used nuclear magnetic resonance (NMR) to look at molecular motion. They also applied a combination of NMR and X-ray scattering to analyze molecular alignment within the Nafion membrane. The researchers were surprised to see the polymer line up in places on the nanoscale, “like strands of dry spaghetti lined up in a box,” as Trulove quotes Madsen. The lining up of the polymers produced channels through which water molecules could move.
The researchers saw that the alignment of the channels had an impact on the speed and direction of the movement of the water molecules. But the researchers weren’t prepared for the surprise when they stretched the Nafion to see what happened.
Trulove writes:
‘Stretching drastically influences the degree of alignment,’ said Madsen. ‘So the molecules move faster along the direction of the stretch, and in a very predictable way. These materials actually share some properties with liquid crystals — molecules that line up with each other and are used in every LCD television, projector, and screen.’
Alignment and stretching haven’t been correlated before in polymer electrolytes. If the polymer can be made to better align, its performance can be dramatically improved to produce more energy-efficient processes in fuel cells, batteries, and other applications. The fundamental understanding of Nafion’s behavior also opens doors to designing new polymer electrolytes that act as better batteries and membranes for water purification.

Comments

Popular posts from this blog

The Future of 3D Printing and Healthcare

When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as  airplane  and  automobile parts  to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in  the 1980s  as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and  patient-specific models  to aid in surgery and medical procedures. With the capability to 3D ...

The Science Behind 4 Of The Greatest Polymers Of All Time

PMMA Applications: Lucite, dentures, aquarium windows Developed in: 1877 Polymethylmethacrylate is a very versatile polymer. If you ever see a clear plastic block, it's probably PMMA. It was first commercialized in the 1930s in Germany, and is now found anywhere one needs clear, strong material. This includes bulletproof "glass" at your favorite corner liquor store and the huge shark tanks at the Monterey Bay Aquarium. But my favorite use of PMMA is in so-called "frozen lightning" or Lichtenberg figure sculpture. Basically, put a chunk of PMMA into an electron accelerator, fire a bunch of electrons into the plastic until it's got about two million volts of charge, then touch the side of the plastic with a bit of wire and watch as bolts of lightning carve tracks inside the clear plastic. Superabsorbers Applications: Diapers Developed in: 1960s Back in the day, diapers were made from cloth. Frequently, those cloth diapers were filled with wads of n...

Virginia Tech Students Create Foldable Bike Helmets

Helmets: Something you may have hated with a passion as a child, but your parents made you wear. As adults, one could argue helmet use is pretty divided. If you head down your local bike path or along a neighborhood street, you’ll see a good number of riders not wearing their helmets. Two Virginia Tech students think that’s a problem. Co-founders David Hall and Jordan Klein started  Park & Diamond  and set out to create a safe, compact, and stylish helmet to hopefully convince people to wear them every time they bike. The interest in refining technology to prevent bike related head injuries is  incredibly personal  for the team of innovators, especially for Hall. In 2015 Hall’s younger sister was involved in a bike accident in Philadelphia and remained in a coma for four months. The bicycle crash occurred at the corner of Park Avenue and Diamond Street in Philadelphia—which is reflected in the name of their company. How Helmets Work Just like the...