Skip to main content

Featured Articlce

The Future of 3D Printing and Healthcare

When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as  airplane  and  automobile parts  to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in  the 1980s  as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and  patient-specific models  to aid in surgery and medical procedures. With the capability to 3D ...

'Liquid Light' Can Bend Around Objects in a Frictionless Flow

'Liquid Light' Can Bend Around Objects in a Frictionless Flow
For several centuries now, scientists have known that light behaves like a wave, expanding out from its source until absorbed or reflected by objects, which are in turn illuminated.
In recent years, however, research has indicated that light can also behave like a liquid — flowing around objects and reconstituting on the other side. Previously, this phenomenon has only been observed under certain extreme conditions, such as laboratory chambers chilled to near absolute zero.
New research published this week in the journal Nature Physics reveals that light can behave in an even stranger "super liquid" state, in which light particles flow around objects with no friction or viscosity at all. In this state, light exhibits the dramatic effect of "frictionless flow," bending around obstacles with no ripples or swirls whatsoever. Interestingly, this effect can be observed at room temperature and ambient pressure.
You'll need some equipment, though. Scientists from CNR Nanotec of Lecce, Italy, in collaboration with École Polytechnique de Montreal in Canada, Imperial College London, Università del Salento in Italy, and Aalto University in Finland, produced the effect by sandwiching a thin layer of organic molecules between two ultra-reflective mirrors, producing what is in effect a light-matter hybrid fluid.
"In this way, we can combine the properties of photons — such as their light effective mass and fast velocity — with strong interactions due to the electrons within the molecules," Stéphane Kéna-Cohen of École Polytechnique de Montreal said in a statement. "Under normal conditions, fluid ripples and whirls around anything that interferes with its flow. In a superfluid, this turbulence is suppressed around obstacles, causing the flow to continue on its way unaltered."
This state of superfluidity is sometimes referred to as the fifth state of matter, or a Bose-Einstein condensate. Particles in this state behave like a single macroscopic wave, oscillating at the same frequency, and paradoxically combining the attributes of liquids, solids, and gases.
"The extraordinary observation in our work is that we have demonstrated that superfluidity can also occur at room temperature, under ambient conditions, using light-matter particles called polaritons," said Daniele Sanvitto, who led the research group.
As to the practical effects of the discovery, the most readily evident benefit concerns superconducting materials that can move electricity around with virtually zero resistance, according to the research team. Typically, these materials need to be radically cooled, usually with liquid nitrogen. If engineers can find a way to harness superfluidity at room temperature, it could lead to new and improved photonic devices like lasers, LEDs, solar panels, and photovoltaic cells.
"The fact that such an effect is observed under ambient conditions can spark an enormous amount of future work," researchers from École Polytechnique de Montreal said in a statement. "Not only to study fundamental phenomena related to Bose-Einstein condensates but also to conceive and design future photonic superfluid-based devices where losses are completely suppressed and new unexpected phenomena can be exploited."

Comments

Popular posts from this blog

The Future of 3D Printing and Healthcare

When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as  airplane  and  automobile parts  to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in  the 1980s  as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and  patient-specific models  to aid in surgery and medical procedures. With the capability to 3D ...

The Science Behind 4 Of The Greatest Polymers Of All Time

PMMA Applications: Lucite, dentures, aquarium windows Developed in: 1877 Polymethylmethacrylate is a very versatile polymer. If you ever see a clear plastic block, it's probably PMMA. It was first commercialized in the 1930s in Germany, and is now found anywhere one needs clear, strong material. This includes bulletproof "glass" at your favorite corner liquor store and the huge shark tanks at the Monterey Bay Aquarium. But my favorite use of PMMA is in so-called "frozen lightning" or Lichtenberg figure sculpture. Basically, put a chunk of PMMA into an electron accelerator, fire a bunch of electrons into the plastic until it's got about two million volts of charge, then touch the side of the plastic with a bit of wire and watch as bolts of lightning carve tracks inside the clear plastic. Superabsorbers Applications: Diapers Developed in: 1960s Back in the day, diapers were made from cloth. Frequently, those cloth diapers were filled with wads of n...

Virginia Tech Students Create Foldable Bike Helmets

Helmets: Something you may have hated with a passion as a child, but your parents made you wear. As adults, one could argue helmet use is pretty divided. If you head down your local bike path or along a neighborhood street, you’ll see a good number of riders not wearing their helmets. Two Virginia Tech students think that’s a problem. Co-founders David Hall and Jordan Klein started  Park & Diamond  and set out to create a safe, compact, and stylish helmet to hopefully convince people to wear them every time they bike. The interest in refining technology to prevent bike related head injuries is  incredibly personal  for the team of innovators, especially for Hall. In 2015 Hall’s younger sister was involved in a bike accident in Philadelphia and remained in a coma for four months. The bicycle crash occurred at the corner of Park Avenue and Diamond Street in Philadelphia—which is reflected in the name of their company. How Helmets Work Just like the...