Skip to main content

Featured Articlce

The Future of 3D Printing and Healthcare

When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as  airplane  and  automobile parts  to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in  the 1980s  as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and  patient-specific models  to aid in surgery and medical procedures. With the capability to 3D ...

More Than a View: Windows Double as Solar Panels

A tech startup on a mission to make modern commercial and housing estates energy neutral has outfitted the headquarters of a Dutch bank with the world's first commercial, fully transparent solar-power-generating windows.
The windows have solar cells installed in the edges at a specific angle that allows the incoming solar light to be efficiently transformed into electricity.


"Large commercial estates consume a lot of energy," said Ferdinand Grapperhaus, co-founder and CEO of the startup, called Physee. "If you want to make these buildings energy neutral, you never have enough roof surface. Therefore, activating the buildings' facades will significantly contribute to making the buildings energy neutral." [Top 10 Craziest Environmental Ideas]
The windows could generate 8 to 10 watts of power, according to Grapperhaus.
"This enables the user to charge a phone per every square meter [11 square feet] two times a day," he told Live Science.
The first installation of Physee's PowerWindows was unveiled in June in Eindhoven, in the south of the Netherlands. The headquarters of Rabobank, the Netherlands' biggest bank, has been fitted with 323 square feet (30 square m) of the PowerWindows. The bank's employees will be able to plug their smartphones into the windows using USB ports to charge their batteries, according to Physee.
Other buildings in the Netherlands are already lined up to receive the innovative solar technology, which has won Physee a place on the World Economic Forum's Technology Pioneers 2017 list.
At the end of June, the headquarters of the Amsterdam-based charity the Postcode Lottery were fitted with the PowerWindows. After that, Physee will move forward with its first large-scale project: a 19,000-square-foot (1,800 square m) installation in a large, newly built residential complex in Amsterdam, the Bold tower.
"I believe that every new type of glass needs power," Grapperhaus said. "Either for the glass to be tinted electrically or heated or inside windows there are these solar blinds, which are electrical and can go up and down but also more and more you can see video glass."
Grapperhaus said that the cost of the wiring that brings power from the grid to such windows is considerable in large commercial estates, and investing in power-generating windows would therefore make commercial sense.
Physee is already working on the next-generation technology that would triple the efficiency of the PowerWindows. The surface of the second generation of PowerWindows will be coated with a special material that transforms oncoming visible light into near-infrared light, which is then transported toward the solar cells in the edges of the windows.
"It works similarly to a [glow-in-the-dark star]," Grapperhaus said. "The difference is that the glow star emits the green wavelength, but the coating on our windows emits light in near-infrared wavelength."
The coating is based on the rare-earth metal thulium. Grapperhaus, together with his friend Willem Kesteloo, discovered the ability of thulium to transform a broad spectrum of light into near-infrared light in 2014, during their studies at the Delft University of Technology.
"Over time, our efficiency will improve further due to the development of better solar cells but also because of the economies of scale," Grapperhaus said. "Right now, we are looking for iconic projects all over the world to show that a large glass building can be made energy neutral in an aesthetic way."
Physee was among 30 early stage technology pioneers highlighted for 2017 and selected by the World Economic Forum for their potential to change the world. The list, announced June 14, consisted of firms developing various technologies, including artificial intelligence, cybersecurity solutions and biotechnology.
Physee's presence on the list shows that the world is starting to take climate change seriously, Grapperhaus said.
"Ten years ago, sustainability was something that wasn't taken very seriously — not by venture capitalists, not by many governments and neither by large corporations," Grapperhaus said. "What I have seen over the last three years is that corporations are becoming more and more responsible, governments are becoming more and more supportive, and venture capitalists are becoming more and more interested" in sustainability.

Comments

Popular posts from this blog

The Future of 3D Printing and Healthcare

When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as  airplane  and  automobile parts  to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in  the 1980s  as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and  patient-specific models  to aid in surgery and medical procedures. With the capability to 3D ...

The Science Behind 4 Of The Greatest Polymers Of All Time

PMMA Applications: Lucite, dentures, aquarium windows Developed in: 1877 Polymethylmethacrylate is a very versatile polymer. If you ever see a clear plastic block, it's probably PMMA. It was first commercialized in the 1930s in Germany, and is now found anywhere one needs clear, strong material. This includes bulletproof "glass" at your favorite corner liquor store and the huge shark tanks at the Monterey Bay Aquarium. But my favorite use of PMMA is in so-called "frozen lightning" or Lichtenberg figure sculpture. Basically, put a chunk of PMMA into an electron accelerator, fire a bunch of electrons into the plastic until it's got about two million volts of charge, then touch the side of the plastic with a bit of wire and watch as bolts of lightning carve tracks inside the clear plastic. Superabsorbers Applications: Diapers Developed in: 1960s Back in the day, diapers were made from cloth. Frequently, those cloth diapers were filled with wads of n...

Virginia Tech Students Create Foldable Bike Helmets

Helmets: Something you may have hated with a passion as a child, but your parents made you wear. As adults, one could argue helmet use is pretty divided. If you head down your local bike path or along a neighborhood street, you’ll see a good number of riders not wearing their helmets. Two Virginia Tech students think that’s a problem. Co-founders David Hall and Jordan Klein started  Park & Diamond  and set out to create a safe, compact, and stylish helmet to hopefully convince people to wear them every time they bike. The interest in refining technology to prevent bike related head injuries is  incredibly personal  for the team of innovators, especially for Hall. In 2015 Hall’s younger sister was involved in a bike accident in Philadelphia and remained in a coma for four months. The bicycle crash occurred at the corner of Park Avenue and Diamond Street in Philadelphia—which is reflected in the name of their company. How Helmets Work Just like the...