Skip to main content

Featured Articlce

The Future of 3D Printing and Healthcare

When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as  airplane  and  automobile parts  to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in  the 1980s  as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and  patient-specific models  to aid in surgery and medical procedures. With the capability to 3D print patient-specific models, more acc

Super Stretchy Material is Also Super Strong

Looking for a new material that was tough, scientists developed one that also can stretch up to 20 times its original length without breaking. The new compound, a hydrogel, could someday be used as artificial cartilage, the researchers say.
A typical hydrogel (a gel whose particles are dispersed in water) can stretch only a few times its length, if that. Even natural rubber can stretchonly five to six times its length.
But the new compound, made of alginate, polyacrylamide and water, proved to be far more stretchable and fracture-proof in tests. Harvard mechanical engineer Zhigang Suo said the scientists clamped it in a stretching machine and also dropped a stainless-steel ball on it.
Lab-made hydrogels are used in soft contact lenses, tissue engineering scaffolds, and drug delivery. Natural hydrogels include tofu (which can be nearly 90 percent water) and "many of our body parts," Suo said. "Cartilage, your heart, your brain can be characterized as hydrogels."
Incredibly enough, the stretchiness was just a side effect of the team's research, Suo said. "We are mainly studying this as a tough material. It happened to be very stretchable, but it really is tough."
A typical hydrogel requires only 10 joules per square meter of force to break. Current contact lenses, made of a hydrogel developed in the 1960s, will break after a few hundred joules per square meter of force. Human cartilage won't tear until it's subjected to 1,000 joules per square meter.
"Our material, the fracture energy goes to about 10,000," Suo said. Since the two polymers that make up the solid part of the gel are "well-known biocompatible materials," the final product may make a suitable cartilage replacement, he said.
The material can recover from being over-stretched, Suo added. If it loses elasticity after being stretched too far, heating it to 176 degrees Fahrenheit (80 degrees Celsius) will restore its stretchiness and firmness.
The research appears in the Sept. 6 issue of the journal Nature.

Comments

Popular posts from this blog

Phthalates and BPA Regulations: Are We There Yet?

It’s better to be safe than sorry.  But the Environmental Protection Agency  recently withdrew two proposed rules regulating chemicals  that it had developed under authority of the Toxic Substances Control Act (TSCA) and submitted to the White House’s Office of Information in 2010 and 2011.  Dr. Richard Deninson  of the Environmental Defense Fund explains it further: Faced presumably with the reality that OIRA [Office of Information and Regulatory Affairs] was never going to let EPA even propose the rules for public comment, EPA decided to withdraw them.  The two proposed rules that were just withdrawn would have: Designated as ‘chemicals of concern’ three classes of chemicals for which evidence is more than sufficient to warrant such a designation:  bisphenol A (BPA), a category of phthalates, and a category of polybrominated diphenyl ethers (PBDEs).  By listing a chemical as ‘of concern,’ EPA may obtain, and provide to the public, more information about the chemical than it

The Science Behind 4 Of The Greatest Polymers Of All Time

PMMA Applications: Lucite, dentures, aquarium windows Developed in: 1877 Polymethylmethacrylate is a very versatile polymer. If you ever see a clear plastic block, it's probably PMMA. It was first commercialized in the 1930s in Germany, and is now found anywhere one needs clear, strong material. This includes bulletproof "glass" at your favorite corner liquor store and the huge shark tanks at the Monterey Bay Aquarium. But my favorite use of PMMA is in so-called "frozen lightning" or Lichtenberg figure sculpture. Basically, put a chunk of PMMA into an electron accelerator, fire a bunch of electrons into the plastic until it's got about two million volts of charge, then touch the side of the plastic with a bit of wire and watch as bolts of lightning carve tracks inside the clear plastic. Superabsorbers Applications: Diapers Developed in: 1960s Back in the day, diapers were made from cloth. Frequently, those cloth diapers were filled with wads of n

Virginia Tech Students Create Foldable Bike Helmets

Helmets: Something you may have hated with a passion as a child, but your parents made you wear. As adults, one could argue helmet use is pretty divided. If you head down your local bike path or along a neighborhood street, you’ll see a good number of riders not wearing their helmets. Two Virginia Tech students think that’s a problem. Co-founders David Hall and Jordan Klein started  Park & Diamond  and set out to create a safe, compact, and stylish helmet to hopefully convince people to wear them every time they bike. The interest in refining technology to prevent bike related head injuries is  incredibly personal  for the team of innovators, especially for Hall. In 2015 Hall’s younger sister was involved in a bike accident in Philadelphia and remained in a coma for four months. The bicycle crash occurred at the corner of Park Avenue and Diamond Street in Philadelphia—which is reflected in the name of their company. How Helmets Work Just like the  crumple zone  in y