Skip to main content

Featured Articlce

The Future of 3D Printing and Healthcare

When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as  airplane  and  automobile parts  to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in  the 1980s  as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and  patient-specific models  to aid in surgery and medical procedures. With the capability to 3D ...

Supercameras Could Capture Never-Before-Seen Detail

A supercamera that can take gigapixel pictures — that's 1,000 megapixels — has now been unveiled.
Researchers say these supercameras could have military, commercial and civilian applications, and that handheld gigapixel cameras may one day be possible.
The gigapixel camera uses 98 identical microcameras in unison, each armed with its own set of optics and a 14-megapixel sensor. These microcameras, in turn, all peer through a single large spherical lens to collectively see the scene the system aims to capture. Since the optics of the microcameras are small, they are relatively easy and cheap to fabricate.
A specially designed electronic processing unit stitches together all the partial images each microcamera takes into a giant, one-gigapixel image. In comparison, film can have a resolution of about 25 to 800 megapixels, depending on the kind of film used.
"In the near-term, gigapixel cameras will be used for wide-area security, large-scale event capture — for example, sport events and concerts — and wide-area multiple-user scene surveillance — for example, wildlife refuges, natural wonders, tourist attractions," said researcher David Brady, an imaging researcher at Duke University in Durham, N.C., told InnovationNewsDaily. "As an example, a gigapixel camera mounted over the Grand Canyon or Times Square will enable arbitrarily large numbers of users to simultaneously log on and explore the scene via telepresence with much greater resolution than they could if they were physically present."
Gigapixel cameras may have scientific value. For instance, a gigapixel snapshot of the Pocosin Lakes National Wildlife Refuge allowed details such as the number of tundra swans on the lake or in the distant sky at that precise moment to be seen, allowing researchers to track individual birds and analyze behavior across the flock. Very wide-field surveillance of the sky is possible as well, enabling analysis of events such as meteor showers.
"I believe that the need to store, manage and mine these data streams will be the definitive application of supercomputers," Brady said.
The gigapixel device currently delivers one-gigapixel images at a speed of about three frames per minute. It actually captures images in less than a tenth of a second — it just takes 18 seconds to transfer the full image from the microcamera array to the camera's memory.
The camera also currently only takes black-and-white images, since color pictures are more difficult to analyze. "Next-generation systems will be color cameras," Brady said.
In addition, the camera is quite large, measuring 29.5 by 29.5 by 19.6 inches (75 by 75 by 50 centimeters), a size required by the space currently needed to cool its electronics and keep them from overheating. The researchers hope that as more efficient and compact electronics get developed, handheld gigapixel cameras might one day emerge, similar in size to current handheld single-lens reflex (SLR) cameras.
"Of course, it is not possible for a person to hold a camera steady enough to capture the full resolution of a gigapixel camera, so it may be desirable to mount the camera on a tripod," Brady said. "On the other hand, motion compensation strategies may overcome this challenge."
The researchers are also working on more powerful cameras. They have currently built a two-gigapixel prototype camera that possesses 226 microcameras, and are in the manufacturing phase for a 10-gigapixel system. Ten- to 100-gigapixel cameras "will remain more backpack-size rather than handheld," Brady said.
The scientists detailed their findings in the June 21 issue of the journal Nature.

Comments

Popular posts from this blog

Phthalates and BPA Regulations: Are We There Yet?

It’s better to be safe than sorry.  But the Environmental Protection Agency  recently withdrew two proposed rules regulating chemicals  that it had developed under authority of the Toxic Substances Control Act (TSCA) and submitted to the White House’s Office of Information in 2010 and 2011.  Dr. Richard Deninson  of the Environmental Defense Fund explains it further: Faced presumably with the reality that OIRA [Office of Information and Regulatory Affairs] was never going to let EPA even propose the rules for public comment, EPA decided to withdraw them.  The two proposed rules that were just withdrawn would have: Designated as ‘chemicals of concern’ three classes of chemicals for which evidence is more than sufficient to warrant such a designation:  bisphenol A (BPA), a category of phthalates, and a category of polybrominated diphenyl ethers (PBDEs).  By listing a chemical as ‘of concern,’ EPA may obtain, and provide to the public, ...

The Science Behind 4 Of The Greatest Polymers Of All Time

PMMA Applications: Lucite, dentures, aquarium windows Developed in: 1877 Polymethylmethacrylate is a very versatile polymer. If you ever see a clear plastic block, it's probably PMMA. It was first commercialized in the 1930s in Germany, and is now found anywhere one needs clear, strong material. This includes bulletproof "glass" at your favorite corner liquor store and the huge shark tanks at the Monterey Bay Aquarium. But my favorite use of PMMA is in so-called "frozen lightning" or Lichtenberg figure sculpture. Basically, put a chunk of PMMA into an electron accelerator, fire a bunch of electrons into the plastic until it's got about two million volts of charge, then touch the side of the plastic with a bit of wire and watch as bolts of lightning carve tracks inside the clear plastic. Superabsorbers Applications: Diapers Developed in: 1960s Back in the day, diapers were made from cloth. Frequently, those cloth diapers were filled with wads of n...

Virginia Tech Students Create Foldable Bike Helmets

Helmets: Something you may have hated with a passion as a child, but your parents made you wear. As adults, one could argue helmet use is pretty divided. If you head down your local bike path or along a neighborhood street, you’ll see a good number of riders not wearing their helmets. Two Virginia Tech students think that’s a problem. Co-founders David Hall and Jordan Klein started  Park & Diamond  and set out to create a safe, compact, and stylish helmet to hopefully convince people to wear them every time they bike. The interest in refining technology to prevent bike related head injuries is  incredibly personal  for the team of innovators, especially for Hall. In 2015 Hall’s younger sister was involved in a bike accident in Philadelphia and remained in a coma for four months. The bicycle crash occurred at the corner of Park Avenue and Diamond Street in Philadelphia—which is reflected in the name of their company. How Helmets Work Just like the...