Skip to main content

Featured Articlce

The Future of 3D Printing and Healthcare

When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as  airplane  and  automobile parts  to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in  the 1980s  as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and  patient-specific models  to aid in surgery and medical procedures. With the capability to 3D print patient-specific models, more acc

'Superlens' Sets New Limits on What You Can See Under a Microscope

A new "superlens" is so powerful that it could help researchers zero in on germs that were too small for microscopes to spot until now, according to a new study.
For centuries, microscopes have helped scientists make major discoveries, such as proving the existence of microbes. However, the physical laws governing light restrict conventional lenses in an important way: They can only focus on items that are no smaller than half the wavelength of the light that is used to see these objects. This means that regular lenses in traditional optical microscopes are limited to examining items that are about 200 nanometers (or billionths of a meter) in size and above — about the size of the smallest known bacteria.
In the past decade or so, researchers have developed so-called "superlenses" that have broken this size limit. However, until now, scientists have had trouble fabricating a superlens that had the right materials and structure to work with visible light.
The new superlens consists of millions of spherical beads of titanium dioxide. Each bead, which is only 15 nanometers wide, is applied onto the material that the researcher wants to view. Similar titanium-dioxide nanoparticles are now often found in sunscreen products and white paint.
The size, shape, and material that make up these particles, and their position relative to each other, help them work together to act like a lens, magnifying features that have previously been invisible to normal lenses.
"Each sphere bends the light to a high magnitude and splits the light beam, creating millions of individual beams of light," study co-author Zengbo Wang, a physicist at Bangor University in Wales, said in a statement. "It is these tiny light beams which enable us to view previously unseen details."
All in all, this superlens can increase the magnification of existing microscopes by a factor of about five. In experiments, the scientists could produce sharp images of items that are 45 nanometers in size.
"Our superlens can be used to visualize live viruses or germs that were previously invisible," Wang told Live Science. "This would allow researchers to study, for example, the interaction of medicines with live viruses in real time."
The researchers noted that one major advantage of their superlens is that titanium dioxide is cheap and readily available. Another is that the superlens could be applied to whatever the person wants to view, which means that a scientist would not have to buy a new microscope.
Future work will focus on "how to make this technique find solid, practical applications," study co-author Limin Wu, a materials scientist at Fudan University in China, told Live Science. Another direction for research is to increase the resolution further by using even smaller nanoparticles, Wang said.

Comments

Popular posts from this blog

Phthalates and BPA Regulations: Are We There Yet?

It’s better to be safe than sorry.  But the Environmental Protection Agency  recently withdrew two proposed rules regulating chemicals  that it had developed under authority of the Toxic Substances Control Act (TSCA) and submitted to the White House’s Office of Information in 2010 and 2011.  Dr. Richard Deninson  of the Environmental Defense Fund explains it further: Faced presumably with the reality that OIRA [Office of Information and Regulatory Affairs] was never going to let EPA even propose the rules for public comment, EPA decided to withdraw them.  The two proposed rules that were just withdrawn would have: Designated as ‘chemicals of concern’ three classes of chemicals for which evidence is more than sufficient to warrant such a designation:  bisphenol A (BPA), a category of phthalates, and a category of polybrominated diphenyl ethers (PBDEs).  By listing a chemical as ‘of concern,’ EPA may obtain, and provide to the public, more information about the chemical than it

The Science Behind 4 Of The Greatest Polymers Of All Time

PMMA Applications: Lucite, dentures, aquarium windows Developed in: 1877 Polymethylmethacrylate is a very versatile polymer. If you ever see a clear plastic block, it's probably PMMA. It was first commercialized in the 1930s in Germany, and is now found anywhere one needs clear, strong material. This includes bulletproof "glass" at your favorite corner liquor store and the huge shark tanks at the Monterey Bay Aquarium. But my favorite use of PMMA is in so-called "frozen lightning" or Lichtenberg figure sculpture. Basically, put a chunk of PMMA into an electron accelerator, fire a bunch of electrons into the plastic until it's got about two million volts of charge, then touch the side of the plastic with a bit of wire and watch as bolts of lightning carve tracks inside the clear plastic. Superabsorbers Applications: Diapers Developed in: 1960s Back in the day, diapers were made from cloth. Frequently, those cloth diapers were filled with wads of n

Virginia Tech Students Create Foldable Bike Helmets

Helmets: Something you may have hated with a passion as a child, but your parents made you wear. As adults, one could argue helmet use is pretty divided. If you head down your local bike path or along a neighborhood street, you’ll see a good number of riders not wearing their helmets. Two Virginia Tech students think that’s a problem. Co-founders David Hall and Jordan Klein started  Park & Diamond  and set out to create a safe, compact, and stylish helmet to hopefully convince people to wear them every time they bike. The interest in refining technology to prevent bike related head injuries is  incredibly personal  for the team of innovators, especially for Hall. In 2015 Hall’s younger sister was involved in a bike accident in Philadelphia and remained in a coma for four months. The bicycle crash occurred at the corner of Park Avenue and Diamond Street in Philadelphia—which is reflected in the name of their company. How Helmets Work Just like the  crumple zone  in y