Skip to main content

Featured Articlce

The Future of 3D Printing and Healthcare

When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as  airplane  and  automobile parts  to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in  the 1980s  as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and  patient-specific models  to aid in surgery and medical procedures. With the capability to 3D ...

Employing Microalgae to Make Biodegradable Plastic

Image result for microalgae
The search is on to find biodegradable plastics that can be made from renewable materials at reasonable costs. Now, researchers in Germany have reported a method for rapidly producing poly-3-hydroxybutyrate (PHB) in microalgae.
PHB is renewable and biodegradable polyester with thermoplastic properties. PHB is produced naturally in bacteria such as Ralstonia eutropha and Bacillus megaterium without petroleum feedstock. And it degrades to carbon dioxide and water, unlike other plastics that may never degrade.
Researchers are exploring various ways to use algae for making more environmentally friendly and sustainable plastic, as shown in the video. Companies have produced PHB, but the bacterial fermentation methods are expensive, and plant systems grow slowly and occupy the agricultural land area.
Bacteria synthesize PHB from acetyl-CoA using the enzymes ß-ketothiolase, acetoacetyl-CoA reductase, and PHB synthase. The bioplastic accumulates in the cytosol of the bacterial cells. The European researchers made PHB by introducing R. eutropha genes into a diatom called Phaeodactylum tricornutum. They confirmed with light and electron microscopy that the diatoms produced PBH in their cytosol. After only seven days, PHB comprised about 10% of the dried weight of the diatoms, according to a journal article.
The European researchers elaborated in their article on the significance of their work:
This study has demonstrated that microalgae like the diatom P. tricornutum have a great potential not only as biosynthetic factory for recombinant proteins but also as photosynthetically fueled bioreactors for synthesizing biotechnologically relevant polymers like PHB.
The researchers also noted in their article that PHB yield may be increased in the future by optimizing the enzymes or the diatoms or using other subcellular compartments such as plastids for PHB synthesis.

Comments

Popular posts from this blog

Phthalates and BPA Regulations: Are We There Yet?

It’s better to be safe than sorry.  But the Environmental Protection Agency  recently withdrew two proposed rules regulating chemicals  that it had developed under authority of the Toxic Substances Control Act (TSCA) and submitted to the White House’s Office of Information in 2010 and 2011.  Dr. Richard Deninson  of the Environmental Defense Fund explains it further: Faced presumably with the reality that OIRA [Office of Information and Regulatory Affairs] was never going to let EPA even propose the rules for public comment, EPA decided to withdraw them.  The two proposed rules that were just withdrawn would have: Designated as ‘chemicals of concern’ three classes of chemicals for which evidence is more than sufficient to warrant such a designation:  bisphenol A (BPA), a category of phthalates, and a category of polybrominated diphenyl ethers (PBDEs).  By listing a chemical as ‘of concern,’ EPA may obtain, and provide to the public, ...

Virginia Tech Students Create Foldable Bike Helmets

Helmets: Something you may have hated with a passion as a child, but your parents made you wear. As adults, one could argue helmet use is pretty divided. If you head down your local bike path or along a neighborhood street, you’ll see a good number of riders not wearing their helmets. Two Virginia Tech students think that’s a problem. Co-founders David Hall and Jordan Klein started  Park & Diamond  and set out to create a safe, compact, and stylish helmet to hopefully convince people to wear them every time they bike. The interest in refining technology to prevent bike related head injuries is  incredibly personal  for the team of innovators, especially for Hall. In 2015 Hall’s younger sister was involved in a bike accident in Philadelphia and remained in a coma for four months. The bicycle crash occurred at the corner of Park Avenue and Diamond Street in Philadelphia—which is reflected in the name of their company. How Helmets Work Just like the...

The Science Behind 4 Of The Greatest Polymers Of All Time

PMMA Applications: Lucite, dentures, aquarium windows Developed in: 1877 Polymethylmethacrylate is a very versatile polymer. If you ever see a clear plastic block, it's probably PMMA. It was first commercialized in the 1930s in Germany, and is now found anywhere one needs clear, strong material. This includes bulletproof "glass" at your favorite corner liquor store and the huge shark tanks at the Monterey Bay Aquarium. But my favorite use of PMMA is in so-called "frozen lightning" or Lichtenberg figure sculpture. Basically, put a chunk of PMMA into an electron accelerator, fire a bunch of electrons into the plastic until it's got about two million volts of charge, then touch the side of the plastic with a bit of wire and watch as bolts of lightning carve tracks inside the clear plastic. Superabsorbers Applications: Diapers Developed in: 1960s Back in the day, diapers were made from cloth. Frequently, those cloth diapers were filled with wads of n...