When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as airplane and automobile parts to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in the 1980s as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and patient-specific models to aid in surgery and medical procedures. With the capability to 3D ...
Why send a person to do a dangerous job when a polymer can do it without facing hazard? A new sensor device made of polymer nanofibers could monitor the safety and integrity of buildings during earthquakes, writes Holly Sheahan for Chemistry World.
Strain sensors in buildings, vehicles or aircraft are not new, but this approach is, according to Sheahan’s reporting. Most sensors have inorganic components that are stiff and can be difficult to fit into small spaces. Guojia Fang and co-workers from Wuhan University in China have fabricated their device with flexible polymer fibers.
Using electrospinning, the researchers made the fibers out of a mixture of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT: PSS) and polyvinyl alcohol (PVA). After forming a fiber network and applying it to a substrate, the researchers encapsulated everything with a layer of polydimethylsiloxane. To test how the device reacted to small movements, they attached the device to a team member’s finger.
“They found that the nanofibres conduct electricity in different ways depending on the strain placed on the material as the finger bends — the more stressed it is, the less current it conducts,” Sheahan explains. She added:
‘During stress, the films elongate and the fibres straighten, so electrical contact between fibres becomes less effective. As a result, the resistance between the electrodes increases,’ explains Stephan Kirchmeyer, an expert in conductive polymers at Heraeus Precious Metals, Germany. This lowers the current across the sensor, which can be measured and used to monitor the extent of the strain.
The researchers suggest in a journal article that the polymer sensor could also be used to make touch-screens because it is tunable and can “detect tiny and quick human actions” such as finger-bending.
Comments
Post a Comment