Skip to main content

Featured Articlce

The Future of 3D Printing and Healthcare

When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as  airplane  and  automobile parts  to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in  the 1980s  as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and  patient-specific models  to aid in surgery and medical procedures. With the capability to 3D print patient-specific models, more acc

Identifying Explosives Enclosed in Plastic Containers

Image result for explosives in plastic containers
A new analytical method could help airport security personnel locate explosives in opaque plastic bottles without having to rifle through suitcases or prepare samples, writes Erika Gebel in Chemical & Engineering News. The method may also be useful for forensic applications.
Freek and colleagues at VU University in Amsterdam, The Netherlands have developed a method that uses time-resolved Raman spectroscopy (TRRS) to provide chemical information for identifying concealed hazardous materials such as explosives inside plastic containers. The method provides more detailed information than X-rays.
Gebel explains:
The idea behind TRRS is that, after a laser excites a sample, the first photons back to the spectrometer are those emitted from the molecules on the sample’s surface, because they have the shortest distance to travel. Researchers avoid these signals by closing the gate in front of the spectrometer’s detector for the first few hundred picoseconds after excitation, Ariese says. Then they open the gate in time to receive the photons and chemical information from deep within the sample.
Ariese and his colleagues provide additional details about their experiments in a journal article. They used a picosecond pulsed laser and an intensified charge-coupled device detector to noninvasively detect explosive materials through several millimeters of polymer-based materials.
They tested powdered dinitrotoluene, a byproduct of TNT, and components of other explosive mixtures, and collected spectra that confirm the method’s ability to identify explosives inside the containers. The containers were made of diffusely-scattering white polymer, including polytetrafluoroethylene (PTFE), polyoxymethylene (POM), and polyethylene (PE). The researchers also tested common packaging materials of various thicknesses including polystyrene and polyvinyl chloride.
Will Raman be coming to airport security lines soon? Maybe. Although the method can’t get past metal containers, Ariese tells Gebel it could be applicable to real-world situations because the laser could be tuned to different wavelengths to examine containers made of materials such as cardboard.

Comments

Popular posts from this blog

Phthalates and BPA Regulations: Are We There Yet?

It’s better to be safe than sorry.  But the Environmental Protection Agency  recently withdrew two proposed rules regulating chemicals  that it had developed under authority of the Toxic Substances Control Act (TSCA) and submitted to the White House’s Office of Information in 2010 and 2011.  Dr. Richard Deninson  of the Environmental Defense Fund explains it further: Faced presumably with the reality that OIRA [Office of Information and Regulatory Affairs] was never going to let EPA even propose the rules for public comment, EPA decided to withdraw them.  The two proposed rules that were just withdrawn would have: Designated as ‘chemicals of concern’ three classes of chemicals for which evidence is more than sufficient to warrant such a designation:  bisphenol A (BPA), a category of phthalates, and a category of polybrominated diphenyl ethers (PBDEs).  By listing a chemical as ‘of concern,’ EPA may obtain, and provide to the public, more information about the chemical than it

The Science Behind 4 Of The Greatest Polymers Of All Time

PMMA Applications: Lucite, dentures, aquarium windows Developed in: 1877 Polymethylmethacrylate is a very versatile polymer. If you ever see a clear plastic block, it's probably PMMA. It was first commercialized in the 1930s in Germany, and is now found anywhere one needs clear, strong material. This includes bulletproof "glass" at your favorite corner liquor store and the huge shark tanks at the Monterey Bay Aquarium. But my favorite use of PMMA is in so-called "frozen lightning" or Lichtenberg figure sculpture. Basically, put a chunk of PMMA into an electron accelerator, fire a bunch of electrons into the plastic until it's got about two million volts of charge, then touch the side of the plastic with a bit of wire and watch as bolts of lightning carve tracks inside the clear plastic. Superabsorbers Applications: Diapers Developed in: 1960s Back in the day, diapers were made from cloth. Frequently, those cloth diapers were filled with wads of n

The Future of 3D Printing and Healthcare

When it comes to 3D printing, the sky is the limit. As 3D printing technology continues to advance, applications can be as far reaching as  airplane  and  automobile parts  to medical devices and even anatomically correct, biocompatible models. Although 3D printing technology is developing at a rapid pace, the technology itself is not new. It emerged in  the 1980s  as a means of creating rapid prototypes. In recent years the applications for 3D printed models have evolved with the available hardware, software, and printable materials. Evolving technology, paired with the creative and innovative minds of scientists, engineers, and physicians, has been the launching pad for developments within 3D printing technology specific to healthcare. One way 3D printing technology is poised to create better patient outcomes is in creating an anatomically and  patient-specific models  to aid in surgery and medical procedures. With the capability to 3D print patient-specific models, more acc